

Estimating Software
Projects

By

Bill Meacham

Copyright © 2003 Bill Meacham

Bill Meacham – bmeacham@bmeacham.com – http://www.bmeacham.com
Revised: April, 2003

Contents
Introduction...3

Objectives ..3
Overview...3

Software Requirements ..4
Entity-Relationship Diagram ..5
Data Flow Diagram...6

Lifecycle Model ...7
Typical Effort...8

The Estimating Process ...9
Estimating Size ..9

Lines of Code as a Unit of Size ..10
Other Formal Methods..10
Functionality as a Unit of Measure...10

Estimating Effort..11
The Estimation Paradigm..12
Statistical Approach..14

General Tips for Estimating...15
Step-by-Step: Estimating a Project by Phases...17
Step-by-Step: Estimating a Simple Project ...22
Appendix A – Estimation Spreadsheet by Phases...26

Notes to Estimation Spreadsheet ..27
Appendix B – Estimation Spreadsheet for a Simple Project...28

Notes to Simple Estimation Spreadsheet ..28

Figures
Figure 1. Entity-Relationship Diagram..5
Figure 2. Data Flow Diagram ..6
Figure 3. Lifecycle Model ...7
Figure 4. Software Estimation Process ..12

Revision History
Date Person Revision
April, 2003 Bill Meacham Prepared for PMI Austin

Copyright © 2003, Bill Meacham Page 2 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Introduction
This class describes a method of estimating used by the author in numerous
engagements as a software development consultant. The assumed context is that
of a consultant doing work for hire for a client. The concepts should be applicable
to staff developers doing work for clients internal to their organization as well.

The author has used this method successfully on projects ranging in size from 150
to 10,000 person-hours (one person for a month up to five people for a year). The
principles are applicable to even larger projects, but the level of detail would have
to be increased.

Objectives
At the conclusion of this class the participant should be able to demonstrate an
understanding of:

How to estimate the size of a software development project

How to estimate the effort required to develop a software system

Overview
The ability to estimate accurately the size, effort and duration of a software
development project is crucial to project success. Accurate estimates enable you
to do several things:

Bid the job with some assurance that you will make money

Satisfy the client

Keep your sanity as you execute the project

In order to provide accurate estimates you need to know several things:

Deliverables: what you will deliver to the client. This includes the
component elements of the system you will build as well as other
deliverables such as technical documents. You need to have a list of web
pages, back-end processing, reports, etc. that will make up the final
system. The component elements must fulfill the requirements.

What phases and stages of activity you will go through in order to build
the system. The phases and stages make up the lifecycle model.

How much effort it typically takes to build each element. For small
projects this can be the total effort for all stages for each element. For

Copyright © 2003, Bill Meacham Page 3 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

more complex projects this should be the effort it takes by phase for each
element.

Requirements and the lifecycle model are covered in depth in other classes in this
series. What follows briefly recapitulates that material.

Software Requirements
Deliverables must fulfill the requirements, or the system will not be what the user
has asked for. There are two types of requirements:

Functional requirements, sometimes called customer requirements. These
are the things that the customer wants the product or system to do, the
benefits the customer wants from the product or system.

Software requirements, sometimes called derived requirements. These are
the things the product or system logically has to do in order to fulfill the
customer requirements.

Once the functional requirements are documented and well understood, we can
create a Software Requirements Specification (an outcome of the Requirements
Analysis stage in the lifecycle model pictured below on page 7.) In a structured
programming environment the Software Requirements Spec typically includes
such things as a data flow diagram and processing specification, entity
relationship diagram and data dictionary, a process flow chart, etc. In object-
oriented development it may include use case diagrams and specifications, class
diagrams, activity diagrams, sequence or collaboration diagrams, etc. These
components tell us what the components of the system will be.

Copyright © 2003, Bill Meacham Page 4 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Entity-Relationship Diagram
For instance, following is an example of part of an Entity-Relationship diagram
(ERD):

Role_ID
Role_Name
Training_Freq
Training_Module_Name

ROLE

Person_ID
Role_ID

PERSON_ROLE

Person_ID
Employee_Num
First_Name
MI
Last_Name
Email_Address
Phone1
Phone2
Fax
Dept_ID

PERSON

Role_ID
Tr_Unit_ID

ROLE_TRAINING
Tr_Unit_ID
Tr_Unit_Name
Tr_Unit_Desc
Training_Source_ID

TRAINING_UNIT

Person_ID
Tr_Unit_ID
Complete_Date

PERSON_TRAINING

Training_Source_ID
Training_Source_Desc

TRAINING_SOURCE

Figure 1. Entity-Relationship Diagram

The ERD tells us that there will be several tables in the database, and what those
tables are.

Copyright © 2003, Bill Meacham Page 5 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Data Flow Diagram
And here is an example of part of a Data Flow diagram (DFD):

DFD 1: Logon

Log On
1.1

Database

User Name
& Password

User Name
& Password

Confirmation

Confirmation

Change
Password

1.2
New

Password

Confirmation

Old
Password

Figure 2. Data Flow Diagram

The DFD tells us that there will be several pages in the web site and what those
pages are. In addition, there may be back-end processing that is not revealed
directly on a web page. This will be modeled in the DFD along with the web
pages.

Copyright © 2003, Bill Meacham Page 6 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Lifecycle Model
The lifecycle model tells you what the phases and stages of activity will be. For
instance, following is a recommended lifecycle model for small to medium-sized
web projects:

Requirements
Analysis

UI Design

System Design

Code

Test

Install

Document &
Train

V-Shaped Life Cycle
for Web Design

Figure 3. Lifecycle Model

The solid lines indicate succession of phases. The UI (User Interface) Design
phase is iterative; the designer prototypes the visual appearance and site
navigation using rapid web design tools, shows it to the client, gets feedback and
makes revisions and shows it to the client again until the client is happy with the
design. The dotted lines indicate that the test plan is written in the System Design
and Code phases and then used in the Test phase.

Copyright © 2003, Bill Meacham Page 7 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Typical Effort
The only way you are going to have a firm grasp on how much effort it takes to
develop each component is to keep careful track of the effort you expend as you
build a system and record that data for later use. The more often you do this, the
more accurate will be the data you use for your estimates.

The templates distributed with this class include some typical effort estimates in
them, but you should not rely on those estimates. Instead rely on your own
experience. As time goes by, we ask our developers to provide us with actual data
so we can compile it to help estimate new projects.

Copyright © 2003, Bill Meacham Page 8 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

The Estimating Process
Having determined the software requirements, you know how many elements and
of what type (data table, web page, etc.) the system will contain. For each element
you want to determine the resources needed to accomplish the tasks of defining its
requirements, building it, testing it, etc. The sum of these will be the resources
needed to implement the project.

To determine the resources needed, you have to predict the size of the deliverable,
i.e. how big it will be. Both estimating size and estimating effort involve
prediction. Estimating size is the prediction of how big the deliverables will be.
Estimating effort is the prediction of the resources needed to produce the
deliverables. Accurate estimates of size and effort are important for the following
reasons:

To set realistic expectations. Many project failures are due to unrealistic
expectations based on inaccurate estimates. Performance is not poor, but the
prediction of performance is often poor.

To improve software quality. Accurate estimates provide the foundation for
project management. Accurate estimates provide for control. Inaccurate
estimates will require adjustments in the project that typically introduce
defects.

Estimating size and estimating effort go together. The reason for predicting the
size of the deliverables is to be able to estimate accurately the effort needed to
produce them.

Estimating Size
Here are some things to consider when estimating the size of a project.

Choose a measure that is appropriate for each terminal element. You may
have many types of measures, such as number of tables and web pages,
number of pages of documentation, number of meetings, etc.

Stick with the size measure for each element so you can compare actual data
to planned estimates over time to provide feedback for improvement. This
will also help you compare one project to another.

The chosen size measures should be easy to use early in the software life
cycle.

The chosen size measures should be readily observable after project
completion.

Copyright © 2003, Bill Meacham Page 9 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Some examples of size measures include the following:

Lines of Code (LOC)

Formal methods such as Function Points or Feature Points

Other measures of the system’s functionality such as
Number of bubbles on a Data Flow Diagram (DFD)
Number of entities on an Entity Relationship Diagram (ERD)
Number of classes, attributes and services on an Class Diagram

Following is some discussion of each of these methods.

Lines of Code as a Unit of Size
We do not recommend lines of code as a measure, particularly for applications
built with a visual tool. The number of lines of code in a system has historically
been used as a measure of its size, mainly because it is easy to count lines of code.
But there are a number of disadvantages:

It is hard to know how many lines of code will be needed before the system is
developed.
Most modern application development environments are highly visual and the
code generated is hidden from the developer.
Source instructions vary with the type of coding languages.
Software involves many costs that may not be considered when just
estimating code size.
LOC count should distinguish between generated code and hand crafted code
because code generators often produce excess code that skews the LOC count
and generated code takes a different amount of effort to produce.

Other Formal Methods
Because of the disadvantages of LOC as a unit of measure, people have devised
other ways of estimating the size of a software system. These include formal
methods such as Function Point Analysis, Feature Point Analysis and
Constructive Cost Modeling (COCOMO). Such formal methods can be very
useful when used rigorously on large projects. For small projects in which the
schedule is tight, they are too complicated. They are not covered in this series.

Functionality as a Unit of Measure
In our experience, the best way to estimate the size of a small to medium project
is to look at the software requirements of the system. Count the artifacts on the
models. How many tables (entities) are there on the Entity-Relationship Diagram?
How many web pages will there be? How many bubbles on Level 1 of the Data
Flow Diagram? How many classes on the Class Diagram? How many data
repositories, relationships, attributes, services? How many simple queries? How

Copyright © 2003, Bill Meacham Page 10 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

many complex, multi-table-joins? How many simple updates? How many
complex updates? How many different business rules need to be accounted for?

Estimating Effort
Once you have estimated the size of the project, in whatever units are appropriate,
you can estimate how much effort it will take to create the system. We discuss
effort instead of time because often the overall effort may be spread among
several team members or even among several projects, therefore bearing little or
no relationship to elapsed time.

For all but very small projects, we recommend that you estimate effort based on
activities to be done as well as things to be produced. Your sizing estimates tell
you how many things (tables, web pages, etc.) will be produced. You can then
look at the specific activities needed to produce them, such as design, coding,
testing, fixing bugs, etc. This will also help you set milestones such as delivery of
the first prototype, delivery of the final version, etc. For each activity, multiply
the effort needed for each unit times the number of units. This is explained in
more detail in Step-by-Step: Estimating a Project by Phases, page 17, and in
Appendix A – Estimation Spreadsheet by Phases, page 26.

For very small projects, you can estimate effort based solely on the deliverables
without breaking your activities out by phases. This approach is explained in
Step-by-Step: Estimating a Simple Project, page 22, and in Appendix B –
Estimation Spreadsheet for a Simple Project, page 28.

Remember that effort includes all activities, managerial, integral, administrative
as well as developmental1. Either increase the effort estimate for each activity to
account for the other activities or add them in as a separate line item at the
bottom. The template spreadsheets include a percentage for project management
at the bottom.

How do you know how much effort will be needed? There are no hard and fast
rules here. It will depend on the experience you or others have had in similar
environments, using similar tools, and creating similar applications in the past.

You can often estimate managerial, integral and administrative tasks by looking at
comparable past projects.

If you do not have past experience to draw on, make an estimate anyway.
Estimate how much effort will be required per entity, per bubble, per class, per

1 Development tasks include such things as Define Requirements, Build Prototype, Build Final Version,
Test, etc. Managerial tasks include project planning, tracking, control, risk analysis, etc. Administrative
tasks include word processing, review meeting room scheduling, etc. Integral tasks are those that span
development phases and provide support for the project, such as configuration management. maintaining
software development tools, collecting and analyzing metrics, etc.

Copyright © 2003, Bill Meacham Page 11 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

query, per update, per business rule, etc. Record the estimates, and as the project
goes on record the actual effort spent per entity, bubble, etc. When the project is
over you will know how much effort was spent compared to the estimates and you
will have started a useful database of historical measures that you can use to
estimate future projects.

The Estimation Paradigm
In general, the steps in the software effort and cost estimation process are those
shown below in Figure 4.

Establish
estimation
objectives

Review
accuracy

Compare
estimates and

iterate

Get several
opinions

Explore as
much detail as

possible

Clarify
software

requirements

Plan
estimation
activities

(execute the
project)

Figure 4. Software Estimation Process

Step 1. Establish Estimation Objectives
Understand how the estimates will be used. If you are doing an initial feasibility
study, the estimates do not have to be as rigorous as they would be for a project
that is about to be executed. Some other things to consider:

Absolute estimates are necessary for labor or resource planning.

Relative estimates may be used for either/or decisions.

Liberal versus conservative estimates heighten decision confidence.

Step 2. Plan Estimation Activities
A plan sets accurate expectations for the cost and value of the estimation process.
View the estimation activities as a “mini-project.” Estimation, like all other
software activities, serves better when more effort is put into it — you get what
you pay for. An estimate produced in 30 minutes will not be as accurate as one
built upon individual estimates of component parts of the system based on a
carefully constructed work breakdown structure.

We recommend, if at all possible, that you sell your engagement in two parts.
First contract with your client for 40 to 160 hours or more of scoping and

Copyright © 2003, Bill Meacham Page 12 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

estimating (the Requirements Analysis phase of the recommended life cycle). In
this phase you will gather the functional requirements and come up with the
software requirements in enough detail to be able to make an accurate estimate for
the rest of the engagement. Then contract with your client for the rest of the work.

How do you know how many hours to propose for the Requirements Analysis
phase? Obviously this requires some estimating in itself. You will need to get a
feeling for the size of the project from your initial contacts with the client. Some
things to look for are the following:

 Functionality. Try to get an idea of how many web pages will be involved,
how complex the database will be, how many external systems the system will
need to interact with, etc.. The more complex the eventual system, the more
time you should spend on estimating.

 Client availability. Find out who the players are in the client’s environment.
How many are there? Are they all physically in the same place? Do they all
have time to talk to you? One of the most important success factors in
delivering a winning system is to identify all the requirements, and that means
talking to all the people who have a stake in the system. The harder it looks
like it will be to do this, the more time you should allot for scoping and
estimating.

 Clarity of purpose. Does the client have a good, clear idea of what they want
to accomplish? Or do they have a marketing idea but not much vision of the
detail? The more you will have to help define the goals of the project in
addition to the methods for achieving the goals, the more time the estimating
part of the engagement will take.

 Client process maturity. Find out how much the client appreciates the value of
good process and good project management. Does the environment seem
orderly and well-managed, or is it chaotic and frenzied? Does the client have
an appreciation of the need for careful planning or do they just want you to
start coding and producing something right away? The less process maturity,
the more time you will need to spend educating the client while you are
scoping and estimating.

Step 3. Clarify Software Requirements
Clarify the requirements to the extent necessary to meet your estimating
objectives. The more you understand about the requirements, the better your
estimates will be. When you can’t clarify, document any assumptions!

Step 4. Explore as Much Detail as Feasible
Remain consistent with estimating objectives. The more detail you explore, the
better your technical understanding will be. The more you think through all of the

Copyright © 2003, Bill Meacham Page 13 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

software functions, the less likely you will be to miss the costs of the less-obvious
functions.

Step 5. Get Several Opinions
Have several people develop estimates independently and then compare and talk
about the results. At the very least, have someone else review your estimates and
give you a sanity check. Also, use more than one technique, for instance
consultation with others and a statistical approach.

Step 6. Compare, Understand and Iterate Estimates
People have differences in experience, roles and incentives. Some will be
optimistic and some pessimistic. Pay attention to the source of your estimates and
adjust accordingly. Also pay attention to Pareto’s Law: 80% of the cost is
contained in 20% of the components. Examine and iterate these components in
greater detail.

Step 7. Review Estimate Accuracy
Compare your estimates against actual performance as the project progresses and
at the end of the project. This will help you estimate better in the future.

Statistical Approach
You can get a better estimate if you provide an optimistic, pessimistic and
realistic estimate. Then you can form a beta distribution by multiplying the
realistic estimate by four, adding the optimistic and pessimistic, and dividing the
total by six. For example, the time required to build a particular component might
be estimated at between four and eight hours, with a belief that it will be closer to
five. Thinking about optimistic and pessimistic scenarios might produce this final
estimate.

4 + (5 x 4) + 8 = 5.33 hours
 6

If there are ten such components, the total estimate for those components would
be 53 or 54 hours.

Copyright © 2003, Bill Meacham Page 14 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

General Tips for Estimating
Avoid off-the-cuff estimates. The safest policy is never to give them. You
never know how far they will travel, and people never remember the
conditions you put on them.

Allow time for the estimate and plan for it. Treat the estimation process as a
project in itself. Hasty estimates will be inaccurate.

Use data from previous projects. This is the single most important factor in
providing accurate estimates and avoiding cost and schedule overruns.

Estimate at a low level of detail. Figure out all the pieces of the project in as
much detail as you can and estimate each piece, preferably by task
(development phase).

If you will have more than one person on the project, make the estimates a
group process:

1. Have each member of the team estimate each piece individually as
Optimistic, Likely and Pessimistic

2. Meet as a group to compare and discuss the estimates. Discuss and
understand the sources of the differences. Come to a consensus regarding
the estimate for each piece.

3. Use the formula given above under Statistical Approach, to factor the
Optimistic, Likely and Pessimistic estimates for each piece.

4. Add up all the pieces.

Software estimation always involves risk and uncertainty. A good estimate
captures that risk and uncertainty so that your client is aware of it. The way you
present the estimate to your client can have a big impact on how the client will
respond to a request to change the estimate later. Here are some ideas for how to
present your estimates:

Use plus-or-minus qualifiers to indicate the amount and direction of
uncertainty. For example:

2000 hours, + 500 hours, – 500 hours A confident estimate
2000 hours, +1000 hours, – 0 hours A risky estimate

Copyright © 2003, Bill Meacham Page 15 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

State the estimate as a range to avoid people ignoring the plus and minus
parts.

1500 – 2500 hours A confident estimate
2000 – 3000 hours A risky estimate

Add percentage factors to indicate the amount of your confidence in the
various estimates

1500 hours 5% confidence
2000 hours 60%
2500 hours 75%
3000 hours 95%

Copyright © 2003, Bill Meacham Page 16 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Step-by-Step: Estimating a Project by Phases
Following are the steps for using the spreadsheet template for estimating a project
by both deliverable component and development phase.

Define Phases
1. Decide what your life cycle phases are. The template accompanying this class

assumes the seven phases listed on page 7 under Lifecycle Model. If you need
to change the phase names, do so on both the Standard Levels of Effort tab
and the Feature Point Detail tab.

If you need to add phases, copy a whole column and paste it, as follows:

a. Select one of the middle columns that define the phases, not the first or the
last. Select the entire column, not just certain cells, and copy it. (Do
Ctrl+C or select Edit / Copy on the spreadsheet menu.)

b. Without changing your selection, do Insert / Copied Cells on the
spreadsheet menu.

c. Change the phase name of the new column as needed.

d. Do the exact same procedure with the same column on both the Standard
Levels of Effort tab and the Feature Point Detail tab.

This will ensure that the formulas remain correct.

Define Deliverables
2. Decide what your deliverables are. Gather functional requirements and define

the software requirements. (These activities are defined in detail in the
Software Development Process class in this series.)

3. Group the deliverables into categories. Following are suggested categories for
small to medium-size web development projects. If you need to change the
categories, do so on both the Standard Levels of Effort tab and the Feature
Point Detail tab.

Copyright © 2003, Bill Meacham Page 17 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Deliverable Description
Data tables Tables in the database.
Web Pages Pages seen by the end user. This category includes both

producing the visual appearance of the pages – the html,
the images, etc. – and designing and coding the logic of
the dynamic functionality, such as interacting with the
database, accepting user input on forms, etc.

Note – If the visual appearance is of particular
importance, as it is in a public e-commerce site, for
instance, then split this category into two, one for
producing the pages and one for producing the logic.

Usability
Design

Sometimes called Information Architecture or Cognitive
Engineering, this is the activity of designing the site
navigation and the visual appearance of the pages in
order to make it easy to use and attractive to the end user.
This is different from the raw functionality. The raw
functionality can be delivered in many different ways,
ugly or pretty, frustrating to use or easy and intuitive to
use, or in between. Usability Design is concerned with
how the raw functionality is presented to the end user.

Typically, the only development phase this applies to is
User Interface Design. It is not lumped in with Web
Pages because the complexity factor may not be the same
as that for creating the web pages.

Reports This category refers to reports delivered directly to the
site administrator or owner, not content delivered over
the web.

Other This category includes any system element that does not
fall in the other categories, in particular back-end
processing that is not directly visible on a web page. For
instance, if the system has to send email alerts when
certain conditions happen or has to read and parse XML
files from an outside source, include that functionality
here. You may need to split this into more than one
category if more than one distinct type of processing is
required.

Documents This category includes technical documentation
(requirements documents, design specs, etc.) as well as
user documentation and installation instructions.

Copyright © 2003, Bill Meacham Page 18 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Enter New Categories If Needed
If you have more than one type of functionality that falls in the Other category,
you will need to add the extra types to the spreadsheet in two places, on the
Standard Levels of Effort worksheet and on the Feature Point Detail worksheet.

4. Add appropriate rows to the Standard Levels of Effort worksheet directly
under Other. Make sure the Total column sums the columns for the
development phases.

5. Add appropriate sections to the Feature Point Detail worksheet. Copy all the
rows in a section and insert them under the Other section.

To insert an additional section do the following:

a. Select all the rows within a section and copy them. (Do Ctrl+C or select
Edit / Copy on the spreadsheet menu.) Select entire rows, not just some of
the columns.

b. Select an entire row below the last section but above the Total for All
Components row and insert the copied rows above it. (Select Insert /
Copied Cells on the spreadsheet menu.)

This is tricky, as you need to make sure that the formulas are correct. Check
the following:

The Standard Levels of Effort cells for the section must point to the
correct cells on the Standard Levels of Effort worksheet.

The formulas in each of the detail lines in the section must be correct.
Compute each cell in the section = (the value in Complexity Factor on its
row) * (the Standard Level of Effort cell for the section in its column).

The totals for each section must include all the rows in the section.

The total line below all the sections, titled “Total for all components”
must include the total line of each section you add.

Enter Standard Levels of Effort
6. Look at the values on the Standard Levels of Effort worksheet and adjust them

if needed.

The standard level of effort is the staff time (person-hours) needed to perform
one stage of activity on one simple deliverable, for instance to define the
requirements for one simple table or build one simple web page.

Copyright © 2003, Bill Meacham Page 19 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Obviously, these are averages. If you have a site with a number of simple web
pages, it is unlikely that each one will take exactly the same amount of effort.
Take the amount of effort needed to produce all of them and divide by the
number of pages to get an average.

How do you know what a reasonable standard level of effort is? From your
own experience and that of others who develop similar applications using a
similar process and similar tools. The spreadsheet template provided with this
class includes our initial estimates, but do not take these as definitive. Instead
collect metrics from your own project and adjust the standard levels of effort
in future estimates to more accurately reflect your own experience.

The Project Management class in this series discusses in detail how to gather
metrics on actual effort expended.

Enter Feature Point Detail
7. Enter the deliverables in the appropriate category on the Feature Point Detail

worksheet. Insert additional rows to accommodate all the deliverables.

To insert additional rows do the following:

a. Select an entire row within a category and copy it. (Do Ctrl+C or select
Edit / Copy on the spreadsheet menu.)

b. Select an entire row in the same category and insert the copied row above
it. (Select Insert / Copied Cells on the spreadsheet menu.)

Adding rows this way ensures that the formulas remain intact.

8. When you are done adding rows, be sure the formulas remain correct.

Each cell in the section must be computed by multiplying the value in
Complexity Factor on its row times the Standard Level of Effort cell for
the section in its column.

 The totals for each section must include all the rows in the section.

9. For each deliverable, enter the complexity factor in the Complexity Factor
column.

The complexity factor indicates how complex the deliverable is. For example,
a simple database table, which has a complexity factor of 1, is one that has
fewer than 20 columns, three or fewer constraints, and no triggers. If a table
has more columns or more constraints or more triggers, increase its
complexity factor. The idea is to calculate the effort by multiplying the
complexity factor times the standard level of effort for a simple element,
whose complexity is 1.

Copyright © 2003, Bill Meacham Page 20 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

If you have several deliverables that have the same level of complexity, you
can put them all on one line instead of listing each of them separately. Enter
how many there are under Volume and the complexity level under Rate. Then
compute Complexity Factor = Volume * Rate. Be sure to make reference to a
requirements document that does list each one separately.

For instance, if you have eight simple tables you could list each one separately
with a complexity of 1 or you could list them all on one line with a calculated
complexity of 8.

10. If there are other tasks in the project that do not fit into this scheme, add a
single line for each of them just above the Total for All Components line.
Make sure they are added in to the Total for All Components.

For instance, maybe you have to purchase and install hardware as part of the
project or research and recommend an off-the-shelf component such as an
accounting package. These tasks do not fit in neatly with software
development phases, so add a line item for each one and put your estimate in
the Total column. Make sure you add them into the Total for All Components.

11. Review your percentage for Project Management.

You must include funding for Project Management! If you do not manage the
project, you have very little reason to believe it will succeed. We suggest 15%
of the total, but you should set this to an amount you feel comfortable with.

We have had clients that do not want to pay for project management. This
class should give you some ammunition for convincing them that it is
necessary. If they are still not convinced, then omit the Project Management
line item, but increase the Standard Levels of Effort to include the extra
percentage.

12. Review your percentage for Contingency.

You should include a percentage for Contingency. You can be virtually
certain that things will not go entirely as planned.

13. Review the spreadsheet for accuracy.

Get someone to check all the formulas and make sure the numbers add up
right. You can get in big trouble if you underbid a job because certain line
items are not included in the total.

14. Do a sanity check on your numbers and get others to review the estimate.

Ask yourself if the final figure is in the ballpark based on your gut feelings.
See how it compares to similar projects you have done in the past. Get others
to give you their opinions.

Copyright © 2003, Bill Meacham Page 21 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Step-by-Step: Estimating a Simple Project
Following are the steps for using the spreadsheet template for estimating a project
by both deliverable component only, without separating out the effort by phase.
Use this spreadsheet if the project is small enough that more detail would be
burdensome.

Define Deliverables
1. Decide what your deliverables are. Gather functional requirements and define

the software requirements. (These activities are defined in detail in the
Software Development Process class in this series.)

2. Group the deliverables into the categories such as Data Tables, Web Pages,
Reports, etc. These categories are explained on page 17.

Enter New Sections If Needed
If you have additional elements, you will need to add them to the spreadsheet in
two places, in the Effort Assumptions section and in the list of elements.

3. Add appropriate rows to the Effort Assumptions section.

4. Add appropriate sections in the list of elements. Copy all the rows in a section
and insert them under the last section.

To insert an additional section do the following:

a. Select all the rows within a section and copy them. (Do Ctrl+C or select
Edit / Copy on the spreadsheet menu.) Select entire rows, not just some of
the columns.

b. Select an entire row below the last section but above the Total All
Features row and insert the copied rows above it. (Select Insert / Copied
Cells on the spreadsheet menu.)

This is tricky, as you need to make sure that the formulas are correct. The
critical formula is in the Effort cells. Check the following:

The formula in the Effort cells for the section must point to the correct
cells in the Effort Assumptions section.

The totals for each section must include all the rows in the section.

The total line below all the sections, titled “Total All Features” must
include the total line of each section you add.

Copyright © 2003, Bill Meacham Page 22 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Enter Effort Assumptions
5. Look at the values in the Effort Assumptions section and adjust them if

needed. These specify the staff time (person-hours) needed to produce one
deliverable whose complexity is Simple, Medium or Complex.

Obviously, these are averages. If you have a site with a number of simple web
pages, it is unlikely that each one will take exactly the same amount of effort.
Take the amount of effort needed to produce all of them and divide by the
number of pages to get an average.

How do you know what a reasonable effort assumption is? From your own
experience and that of others who develop similar applications using a similar
process and similar tools. The spreadsheet template provided with this class
includes our initial assumptions, but do not take these as definitive. Instead
collect metrics from your own project and adjust the standard levels of effort
in future estimates to more accurately reflect your own experience.

The Project Management class in this series discusses in detail how to gather
metrics on actual effort expended.

Enter Feature Point Detail
6. Enter the deliverables in the appropriate category on the Feature Point Detail

worksheet. Insert additional rows to accommodate all the deliverables.

To insert additional rows do the following:

a. Select an entire row within a category and copy it. (Do Ctrl+C or select
Edit / Copy on the spreadsheet menu.)

b. Select an entire row in the same category and insert the copied row above
it. (Select Insert / Copied Cells on the spreadsheet menu.)

Adding rows this way ensures that the formulas remain intact.

7. When you are done adding rows, be sure the formulas remain correct.

The formula in each Effort cell must point to the correct cells in the Effort
Assumptions section.

 The totals for each section must include all the rows in the section.

8. For each deliverable, enter the complexity factor in the Complexity column.

Complexity indicates how complex the deliverable is. For example, a simple
database table is one that has fewer than 20 columns, three or fewer

Copyright © 2003, Bill Meacham Page 23 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

constraints, and no triggers. If a table has more columns or more constraints or
more triggers, increase its complexity factor to Medium or Complex

If you have several deliverables that have the same level of complexity, you
can put them all on one line instead of listing each of them separately. Enter
how many there are under Number. The formula in the Effort cells multiplies
the number times the appropriate effort assumption. Be sure to make reference
to a requirements document that does list each one separately.

For instance, if you have eight simple tables you could list each one separately
with a Number of 1 or you could list them all on one line with a Number of 8.

9. If there are other tasks in the project that do not fit into this scheme, add a
single line for each of them just above the Total All Features line. Make sure
they are added in to the Total All Features.

For instance, maybe you have to purchase and install hardware as part of the
project or research and recommend an off-the-shelf component such as an
accounting package. These tasks do not fit in neatly with software
development phases, so add a line item for each one and put your estimate in
the Total column. Make sure you add them into the Total All Features.

10. Review your percentage for Project Management.

You must include funding for Project Management! If you do not manage the
project, you have very little reason to believe it will succeed. We suggest 15%
of the total, but you should set this to an amount you feel comfortable with.

We have had clients that do not want to pay for project management. This
class should give you some ammunition for convincing them that it is
necessary. If they are still not convinced, then omit the Project Management
line item, but increase the Standard Levels of Effort to include the extra
percentage.

11. Review your percentage for Contingency.

You should include a percentage for Contingency. You can be virtually
certain that things will not go entirely as planned.

12. Review the spreadsheet for accuracy.

Get someone to check all the formulas and make sure the numbers add up
right. You can get in big trouble if you underbid a job because certain line
items are not included in the total.

Copyright © 2003, Bill Meacham Page 24 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

13. Do a sanity check on your numbers and get others to review the estimate.

Ask yourself if the final figure is in the ballpark based on your gut feelings.
See how it compares to similar projects you have done in the past. Get others
to give you their opinions.

Copyright © 2003, Bill Meacham Page 25 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Appendix A – Estimation Spreadsheet by
Phases

This is an abbreviated version of the spreadsheet used to estimate the effort
needed by phase. It does not include all the phases of activity. See notes below.

 Functional Analysis

 System Components Diffi
cult
y

Vol
um
e

Com
plexit

y

Define
Require-
ments

Build
Prototype

Build Final
Version

Test Install Total

Database Tables

 Standard Level of Effort 0.5 1.5 0.0 0.5 0.5 3.0

 Simple tables 1 8 8 4.0 12.0 0.0 4.0 4.0 24.0
 More difficult tables 2 2 4 2.0 6.0 0.0 2.0 2.0 12.0

 Total for Database Tables 6.0 18.0 0.0 6.0 6.0 36.0

Pages

 Standard Level of Effort 0.5 3.0 1.0 1.0 0.5 6.0

 Main Menu 1 1 1 0.5 3.0 1.0 1.0 0.5 6.0

 Update Products 4 1 4 2.0 12.0 4.0 4.0 2.0 24.0
 Update Supplies 2 1 2 1.0 6.0 2.0 2.0 1.0 12.0
 Update Customers 5 1 5 2.5 15.0 5.0 5.0 2.5 30.0

 Total for Pages 6.0 36.0 12.0 12.0 6.0 72.0

Reports

 Standard Level of Effort 0.5 1.0 0.5 0.5 0.5 3.0

 Summary Report 3 1 3 1.5 3.0 1.5 1.5 1.5 9.0

 Products Report 1 1 1 0.5 1.0 0.5 0.5 0.5 3.0
 Supplies Report 1 1 1 0.5 1.0 0.5 0.5 0.5 3.0
 Customers Report 2 1 2 1.0 2.0 1.0 1.0 1.0 6.0

 Total for Reports 3.5 7.0 3.5 3.5 3.5 21.0

 Total for all functions 15.5 61.0 15.5 21.5 15.5 129.0

 Project Management 15% 19.35

 Contingency 25% 32.25

 Total Estimate 180.6

Copyright © 2003, Bill Meacham Page 26 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Notes to Estimation Spreadsheet
Functional elements such as tables, web pages and reports are listed down the left.
Activities such as Analysis & Design and Final Test are listed across the top.
Each intersection estimates the amount of effort needed to perform the activity on
the element. You can list each functional element individually or you can lump all
the elements of the same difficulty together. In the example above, web pages and
reports are listed separately and tables are lumped together. For small projects it is
good to list everything separately so you know you have not forgotten anything.
For larger projects, this may be unwieldy and you may have to refer to a separate
list of elements.

Standard Level of Effort is the amount of effort needed to perform the activity on
one functional element of minimal difficulty. Include a page of definitions of
“minimal difficulty.” For example:

Data Tables Fewer than 20 columns, three or fewer constraints.
Web pages One table, fewer than 20 data items, minimal code behind the

web page; includes stored procedures needed to facilitate data
entry.

Reports Tabular format, no calculations other than column totals; effort
includes underlying query.

Note – these Standard Levels of Effort are examples only. Do not blindly
apply them to your project. Instead find records of actual effort from
comparable projects or get several people to help you estimate.

Complexity is a function of how many elements there are of a certain type and
how difficult they are. For instance, if there are two tables that are twice as
difficult as a simple table, the complexity factor for them is four.

The individual cells are calculated as Complexity * Standard Level of Effort.

Always add Project Management at the bottom! Project management is absolutely
crucial to completing the project on time and within budget.

If there are other things that are not easily listed in the function/activity format –
for instance database administration or network capacity planning – add them at
the bottom as well.

Always add a contingency. Nothing ever turns out exactly as planned.

This is a spreadsheet for small to medium projects. Large projects will have more
complex methods of estimating effort. For instance, an element of difficulty n
may not take exactly n times the standard level of effort for all phases.

Copyright © 2003, Bill Meacham Page 27 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Appendix B – Estimation Spreadsheet for a
Simple Project

This is an abbreviated version of the spreadsheet used to estimate effort without
splitting it out by phases. See notes below.

 Effort Assumptions
 Simple Medium Complex

Data Tables 4 12 20
Web Pages 8 24 40
Reports 8.5 25 42

Data Tables Complexity Number Effort

Table 1 S 1 4
Table 2 M 1 12
Table 3 C 1 20

Total Tables 36

Web Pages Complexity Number Effort

Page 1 S 1 8
Page 2 M 1 24
Page 3 C 1 40

Total Pages 72

Reports Complexity Number Effort

Report 1 S 1 8.5
Report 2 M 1 25
Report 3 C 1 42

Total Reports 75.5

Total All Features 184

Project Management 15% 28
Contingency 20% 37

Total Estimate 248

These estimates include design, code and test.

Notes to Simple Estimation Spreadsheet
Functional elements such as tables, web pages and reports are listed down the left.
Effort is estimated by element for the entire project, not broken out by phase.
Each line lists the amount of effort needed to produce the element throughout all
phases of the project.

Copyright © 2003, Bill Meacham Page 28 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Copyright © 2003, Bill Meacham Page 29 of 29
bmeacham@bmeacham.com – http://www.bmeacham.com

Effort assumptions show the amount of effort needed to produce a simple,
medium and complex functional element. The formulas in the spreadsheet plug in
the correct number based on the code – S, M or C – in the Complexity column.

You can list each element separately with the Number set to 1 or you can lump
several elements together on a line and put the number of elements in Number.

Always add Project Management at the bottom! Project management is absolutely
crucial to completing the project on time and within budget.

If there are other things that are not easily listed in the function/activity format –
for instance database administration or network capacity planning – add them at
the bottom as well.

Always add a contingency. Nothing ever turns out exactly as planned.

	Introduction
	Objectives

	Overview
	Software Requirements
	Entity-Relationship Diagram
	Data Flow Diagram

	Lifecycle Model
	Typical Effort

	The Estimating Process
	Estimating Size
	Lines of Code as a Unit of Size
	Other Formal Methods
	Functionality as a Unit of Measure

	Estimating Effort
	The Estimation Paradigm
	Step 1. Establish Estimation Objectives
	Step 2. Plan Estimation Activities
	Step 3. Clarify Software Requirements
	Step 4. Explore as Much Detail as Feasible
	Step 5. Get Several Opinions
	Step 6. Compare, Understand and Iterate Estimates
	Step 7. Review Estimate Accuracy

	Statistical Approach

	General Tips for Estimating

	Step-by-Step: Estimating a Project by Phases
	
	
	Define Phases
	Define Deliverables
	Enter New Categories If Needed
	Enter Standard Levels of Effort
	Enter Feature Point Detail

	Step-by-Step: Estimating a Simple Project
	
	
	Define Deliverables
	Enter New Sections If Needed
	Enter Effort Assumptions
	Enter Feature Point Detail

	Appendix A – Estimation Spreadsheet by Phases
	
	Notes to Estimation Spreadsheet

	Appendix B – Estimation Spreadsheet for a Simple
	
	Notes to Simple Estimation Spreadsheet

